The circular chromatic number of a digraph
نویسندگان
چکیده
We introduce the circular chromatic number χc of a digraph and establish various basic results. They show that the coloring theory for digraphs is similar to the coloring theory for undirected graphs when independent sets of vertices are replaced by acyclic sets. Since the directed k-cycle has circular chromatic number k/(k − 1), for k ≥ 2, values of χc between 1 and 2 are possible. We show that in fact, χc takes on all rational values greater than 1. Furthermore, there exist digraphs of arbitrarily large digirth and circular chromatic number. It is NP-complete to decide if a given digraph has χc at most 2.
منابع مشابه
A short construction of highly chromatic digraphs without short cycles
A natural digraph analogue of the graph-theoretic concept of an ‘independent set’ is that of an ‘acyclic set’, namely a set of vertices not spanning a directed cycle. Hence a digraph analogue of a graph coloring is a decomposition of the vertex set into acyclic sets. In the spirit of a famous theorem of P. Erdős [Graph theory and probability, Canad. J. Math. 11 (1959), 34–38], it was shown prob...
متن کاملAcyclic Homomorphisms and Circular Colorings of Digraphs
An acyclic homomorphism of a digraph D into a digraph F is a mapping φ : V (D) → V (F ) such that for every arc uv ∈ E(D), either φ(u) = φ(v) or φ(u)φ(v) is an arc of F , and for every vertex v ∈ V (F ), the subgraph of D induced on φ(v) is acyclic. For each fixed digraph F we consider the following decision problem: Does a given input digraph D admit an acyclic homomorphism to F? We prove that...
متن کاملA Construction of Uniquely n-Colorable Digraphs with Arbitrarily Large Digirth
A natural digraph analogue of the graph-theoretic concept of an ‘independent set’ is that of an ‘acyclic set’, namely a set of vertices not spanning a directed cycle. Hence a digraph analogue of a graph coloring is a decomposition of the vertex set into acyclic sets and we say a digraph is uniquely n-colorable when this decomposition is unique up to relabeling. It was shown probabilistically in...
متن کاملBrooks-type Results for Coloring of Digraphs
In the thesis, the coloring of digraphs is studied. The chromatic number of a digraph D is the smallest integer k so that the vertices of D can be partitioned into at most k sets each of which induces an acyclic subdigraph. A set of four topics on the chromatic number is presented. First, the dependence of the chromatic number of digraphs on the maximum degree is explored. An analog of Gallai’s...
متن کاملA note on the Roman domatic number of a digraph
Roman dominating function} on a digraph $D$ with vertex set $V(D)$ is a labeling$fcolon V(D)to {0, 1, 2}$such that every vertex with label $0$ has an in-neighbor with label $2$. A set ${f_1,f_2,ldots,f_d}$ ofRoman dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vin V(D)$,is called a {em Roman dominating family} (of functions) on $D$....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Graph Theory
دوره 46 شماره
صفحات -
تاریخ انتشار 2004